A high order splitting method for time-dependent domains
نویسندگان
چکیده
preprint numerics no. 1/2008 norwegian university of science and technology trondheim, norway We present a temporal splitting scheme for the semi-discrete convection-diffusion equation and the semi-discrete incompressible Navier-Stokes equations in time-depedent geometries. The proposed splitting scheme can be considered as an extension of the OIF-method proposed in [22] in the sense that it can be interpreted as a semi-Lagrangian method for time-dependent domains. The semi-discrete equations are derived from an arbitrary Lagrangian-Eulerian (ALE) formulation of the governing equations, and are discretized in space using high order spectral elements. The proposed splitting scheme has been tested numerically on model problems with known analytical solutions, and first, second , and third order convergence in time has been obtained. We also show that it is not necessary for the interior mesh velocity to be obtained through the use of an elliptic solver. Numerical tests show that it is sufficient that the mesh velocity is regular within each spectral element and only C 0-continuous across element boundaries; this is consistent with the theoretical results presented in [9]. In addition, the mesh velocity should be regular in the time direction.
منابع مشابه
High order schemes based on operator splitting and deferred corrections for stiff time dependent PDEs
We consider quadrature formulas of high order in time based on Radau–type, L–stable implicit Runge–Kutta schemes to solve time dependent stiff PDEs. Instead of solving a large nonlinear system of equations, we develop a method that performs iterative deferred corrections to compute the solution at the collocation nodes of the quadrature formulas. The numerical stability is guaranteed by a dedic...
متن کاملConvergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations
In this work, the issue of favorable numerical methods for the space and time discretization of low-dimensional nonlinear Schrödinger equations is addressed. The objective is to provide a stability and error analysis of high-accuracy discretizations that rely on spectral and splitting methods. As a model problem, the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Ei...
متن کاملA Fast Solver for Systems of Reaction-Diffusion Equations
Here, u is a vector-valued function, u ≡ u(x, t) ∈ R, m is large, and the corresponding system of ODEs, ∂tu = F (x, t, u), is stiff. Typical examples arise in air pollution studies, where a is the given wind field and the nonlinear function F models the atmospheric chemistry. The time integration of Eq. (1) is best handled by the method of characteristics [1]. The problem is thus reduced to des...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملFourth order real space solver for the time-dependent Schrödinger equation with singular Coulomb potential
We present a novel numerical method and algorithm for the solution of the 3D axially symmetric timedependent Schrödinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008